
PHYSICAL REVIEW E MARCH 1998VOLUME 57, NUMBER 3
Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation

I. V. Biktasheva, Yu. E. Elkin, and V. N. Biktashev
Institute for Mathematical Problems in Biology, 142292 Pushchino, Moscow region, Russia

~Received 4 August 1997!

Dynamics of spiral waves in perturbed~e.g., slightly inhomogeneous! two-dimensional autowave media can
be described asymptotically in terms of Aristotelean dynamics, so that the velocities of the spiral wave drift in
space and time are proportional to the forces caused by the perturbation. These forces are defined as convo-
lutions of the perturbation with the so-called response functions. In this paper, we find the response functions
numerically for the spiral waves in the complex Ginzburg-Landau equation, and show that they exponentially
decrease with distance.@S1063-651X~98!06603-3#

PACS number~s!: 82.40.Bj, 02.60.Cb, 64.60.Ht, 87.10.1e
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Problem formulation.Spiral waves are observed in two
dimensional nonlinear active systems of various natures,
Belousov-Zhabotinsky reaction@1# cardiac tissue@2#, social
microorganisms@3#, neural tissue@4#, and catalytic oxidation
of CO @5#. They attract attention as model self-organizi
structures, and demonstrate remarkable stability. In this
per, we show that spiral waves have a very selective se
tivity to perturbations.

Spiral waves are often studied in terms of ‘‘reactio
diffusion’’ PDE systems,

] tu5D¹2u1f~u!1«h~RW ,t !, ~1!

where RW PR2, u(RW ,t)5(u1 ,u2 , . . . )TPRl is a column-
vector of reagent concentrations,fPRl are nonlinear reac
tion rates,DPRl 3l is matrix of diffusion coefficients,l >2
and «hPRl is a perturbation. As shown in@6#, if the last
term in ~1! is of a more general form of parametric pertu
bation«h(u,RW ,t), this still reduces to~1! in the first order in
«, so without loss of generality here we consider the simp
form «h(RW ,t). Physical origin of the perturbation may b
various; the most frequent in applications is inhomogene
of medium parameters, but the analysis can be also exte
to external influence, anisotropy, etc.

The simplest case of spiral wave is that of the stead
rotating spiral,

u5Ū~RW ,t !5U~P,Q1vt !, ~2!

wherev is its angular velocity and P5P(RW ), Q5Q(RW ) are
polar coordinates. This may be observed in perfectly hom
geneous unbounded stationary media, i.e., at«h50. In the
presence of perturbations, the spiral will drift in space a
accelerate or decelerate its rotation, i.e., ‘‘drift in time.’’ Th
can be represented by

u~RW ,t !5ŪS RW 2RW c~ t !,t2
1

v
F~ t ! D1«v~RW ,t !, ~3!

whereRW c5(Xc ,Yc) is the vortex rotation center andF is its
initial rotation phase.
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The asymptotic theory of such drifts has been develo
in @6#. It leads to Aristotelian motion equations, where t
drift velocities are proportional to the forces caused by p
turbation«h,

] tF5H ~0!, ] t~Xc1 iYc!5H ~1!. ~4!

In the first approximation, the forces are linear convolutio
type functionals of the perturbation,

H ~n!~RW c ,F,t !5«e2 in~vt2F!E ^W„n…

„rW…,h~RW ,t !& d2RW

1O~«2!, n50,1, ^a,b&[(
i 51

l

ai* bi ,

~5!

whererWPR2 is the radius vector in the frame of referenc
attached to the spiral wave, where the polar coordinates

r5P~RW 2RW c!, q5Q~RW 2RW c!1vt2F. ~6!

We call kernelsW(0,1) response functions~RF’s!. They de-
termine the influence of particular perturbations at a parti
lar site and instant onto the phase~temporalRF, W(0)) and
location~spatialRF,W(1)) of the spiral wave. As seen in Eq
~5!, graphs of these functions rotate together with their sp
wave.

The RF’s are interesting characteristics of the spiral wa
Known experiments and numerics may be interpreted so
these functions decrease with distance. This decrease
provide convergence of integrals~5! for nonlocalized pertur-
bations, e.g., caused by variation of properties of the wh
medium. The viewpoint of@7# was that these functions ar
asymptotically periodic, similarly to the spiral wave itse
Our viewpoint @8,6# is that these functions should quickl
decay. In other words, although spiral waves do notlook like
localized objects, theybehaveas such in their dynamics. W
are unaware of any attempts to prove or disprove this pr
erty directly.

In this paper, we study this question for the compl
Ginzburg-Landau equation. This equation is one of the m
basic equations of nonlinear science; another reason for
choice is its internal symmetry, which simplifies the analys
2656 © 1998 The American Physical Society
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FIG. 1. The nonlinear problem solution,~b! temporal mode components, and~c! spatial mode components, as functions ofr.
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reducing the two-dimensional eigenvalue problem to a o
dimensional one. For this model, we find the RF’s nume
cally and show that they have the expected localized for

The linearized theory.Linearization of reaction-diffusion
system~1! on ~3! in the frame of reference~6! leads to an
equation with a time-independent linear operator,

L5D¹22v]q1F~rW !, ~7!

whereF(rW)5]ufuu5U(rW) . This operator has three neutral st
bility eigenvalues,

LV~n!5 ivnV~n!, n50,61, ~8!

corresponding to the translations in space and time, with
eigenfunctions, the translation modes being

V~0!5
1

v
] tŪ~RW ,t !5]qU~rW !,

V~61!5 1
2 e7 ivt~]x7 i ]y!Ū~RW ,t !5 1

2 e7 iq~]r7 ir21]q!U~rW !.
~9!

The adjoint linear operator is

L15DT¹21v]q1FT~rW !, ~10!
-
-
.

e

and its eigenfunctions

Ln
1W~n!52 ivnW~n!, E ^W~n!,V~m!&d2rW5dnm ,

n,m50,61 ~11!

serve as projectors onto these modes, and are the RF’s.
requirement thatv in Eq. ~3! is orthogonal toW(n) leads to
the motion equations~4! @6#.

Application to the complex Ginzburg-Landau equatio
This equation can be written in the form

] tu5u2~12 ia!uuuu21~11 ib!¹2u ~12!

for uPC with real parametersa and b. In this paper, we
restrict ourselves to the case ofa50.5 andb50 ~and omit
b). To apply the general theory of@6# we first rewrite Eq.
~12! in real vector form@9#. Let us denote

u~RW ,t !5S Re u

Im u,D , I5S 0 21

1 0 D , C5S 1 0

0 21D ,

15S 1

0D . ~13!
FIG. 2. ~a! Spiral waveU1, ~b! temporal RF,W1
(0) , ~c! real part of spatial RF, ReW1

(1) , and~d! imaginary part of spatial RF, ImW1
(1) .

Spiral wavelength is about 67; (x,y)P@230,30#3@230,30#.
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Then Eq.~12!, with added perturbation, takes the form

] tu5u2~12aI!•u~uT
•u!1¹2u1«h~RW ,t !, ~14!

The unperturbed spiral wave solution~2! to Eq. ~12! has the
form

U~rW !5exp~Iq!•P~r!. ~15!

Here P(r) is a solution to the following boundary-valu
problem,

P91P8/r1@12Iv2~12Ia!~PT
•P!21/r2#•P50,

~16a!

P~0!50, P~r!'A12k2ekrI1o~r!
•1, r→`, @10#

~16b!

wherek is a nonlinear eigenvalue, andv5a(12k2). This
problem was brought to a scalar form by substitutionP(r)
5a(r)exp@Ic(r)#•1 with real a and c. Solutions to this
problem were studied, e.g., by Hagan@11#; they are illus-
trated below by Figs. 1~a! @for a(r) andc8(r)# and 2~a! @for
U1(x,y)#.

It can be seen that, due to the symmetry of Eqs.~14! and
~15!, theC2-valued RF’s defined by Eq.~11! have the form

W~n!~r,q!5exp@~I2 in !q#•Q~n!~r!, n50,61.
~17!

This reduces the two-dimensional problems forW(n) to one-
dimensional problems for functionsQ(n)(r):

Q~n!91
1

r
Q~n!81H 11Iv1

~I2 in !2

r2

2a2@2~11Ia!1~12Ia!e2IcC#J •Q~n!50,

~18a!

uQ~n!u,`, r→0; Q~n!→0, r→`. ~18b!

Method of solution and results.It can be seen that ifQ(n)

tend to zero asr→`, they do so exponentially, with decre
mentL5L(a,k) being the smallest positive root of the c
bic equation

L322~123k2!L14ka~12k2!50. ~19!

This requirement makes problems~18! formally overdeter-
mined, as in fact they are EVP’s, and that the eigenvalues
ivn is only our expectation. To make them numerica
treatable, they were reformulated as EVP’s with eigenval
l0PR for n50 ~temporal mode! and iv1l1

r 1 il1
i PC for

n51 ~spatial mode!, and the smallness ofl0, l1
i , and l1

r

was considered an estimation of the accuracy of the num
cal procedure. The problems were brought to real scalar f
by substitutionsQ(0)5(A1IB)•exp(Ic)•1 and Q(1)5(C
1ID1 iE1 iIF)•exp(Ic)•1. The half-infinite interval
re

s

ri-
m

rP@0,1`) was replaced by a finite intervalrP@0,rmax#.
Boundary conditions A(0)5B(0)5C8(0)5D8(0)50,
E(0)5D(0), F(0)52C(0), and Q(n)8(rmax)
52LQ(n)(rmax) were posed based on conditions~18b! via
asymptotics of acceptable solutions to the ODE syst
~18a!. To select unique solutions of these homogeneous
tems, we added conditionsB8(0)5C(0)5D(0)51, and
normalized the solutions according to Eq.~11! afterwards.
Thus posed boundary-value–eigenvalue problems have
studied in the double limit in the two numeric paramete
the cutoff radiusrmax→`, and the discretization steph→0.
The discretization was second order inh, and the solutions
looked for should decrease exponentially at larger. There-
fore, the expected behavior of the small eigenvalues is

l0 ,l1
r ,l1

i 5O@h21exp~2Lrmax!#, h→0,

rmax→`. ~20!

This agrees well with the numerical results shown on Fig
where the dependence onh is shown in logarithmic, and on
rmax in semilogarithmic coordinates, so that the linear fo
of the graphs corresponds to the asymptotics~20!. We con-
sider this as a numerical proof of existence of solutions to
overdetermined problem~18!. The solutions are shown in
Figs. 1~b,c!. Both temporal and spatial RF’s do deca
quickly, being essentially nonzero only in the core. The
constructed shape of RF in the (x,y) plane is shown on Figs
2~b!–~d!. Only the first components are shown; the seco
components are the first ones rotated in the (x,y) plane by
p/2. The behavior of the RF’s at other tested values ofa and
b was analogous; at small (a2b), the spatial scale of all the
functions grows rapidly, which is consistent with Hagan
asymptotics@11#.

Conclusion.We have obtained numerically the respon
functions of spiral waves in the complex Ginzburg-Land
equation. As expected, these functions are localized aro
the core of the spiral, and decay exponentially outside it. T
spatial scale of localization,L21, can be found analytically
from Eq. ~19!. Unlike solitons, spiral waves look like esse
tially nonlocalized objects. On the other hand, their dynam
properties, determined by the RF’s, are those of locali
objects. This opposition between the nonlocal appeara
and the infinity region of influence, on one side, and lo
sensitivity and independence on distant events, on the o

FIG. 3. The absolute values of the eigenvaluesul0u (L) and
ul1

r 1 il1
i u (1) as functions~a! of discretization steph, at rmax

5100, and~b! of cutoff radiusrmax, at h50.05.
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side, makes spiral waves a very interesting example o
self-organization pattern. We believe that this physical pr
erty of localization is mathematically expressed as the e
tence of eigenvalues 0 and6 iv of the adjoint linearized
operator in the space of functions integrable over the pla
and is common for all proper spiral waves in gene
reaction-diffusion systems. The detailed conditions for t
property is a subject for further study, and here we ha
c.

s.
a
-

s-

e,

s
e

shown only the first, to our knowledge, direct evidence
this viewpoint.
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